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Surface adsorption of comb polymers by Monte Carlo simulations
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Abstract
This paper reports off-lattice Monte Carlo simulations of highly-branched comb homopolymers weakly adsorbed on a flat, featureless surface
showing only covolume and dispersion interactions with the adsorbate. A minimal coarse-grained model, described by hard spheres connected
by harmonic springs, was employed. The interaction energy of the adsorbed combs and linear chains is first discussed as a function of the
molecular mass and of the number of beads in contact with the surface. The molecular size is then investigated as a function of backbone length
and branching density at a fixed arm size. The apparent swelling exponents of the adsorbed combs are larger than those of the corresponding
linear chains, and much larger than that of the free molecules. This result indicates a surface-induced stiffening of the comb backbone, further
studied through the persistence length lpers. It is found that lpers increases upon adsorption over the free-molecule value, more so the larger is the
branching density. Finally, the thickness of the adsorbed layer, the surface-induced molecular anisotropy and the molecular aspect ratio are
investigated as a function of branching density and molecular mass.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Regular comb polymers, in particular those with a large
density of branching, arose a great interest in the last years
due to their conformational properties, in particular the back-
bone stiffness and the possibility to control it by changing the
density of branching and the length of the side chains [1e6].
This feature of an enhanced rigidity due to covolume repulsions
among the side chains was recently referred to as ‘topological’
stiffness [7], which may add to the ‘intrinsic’ stiffness of the
backbone due to the local chemical structure. Highly-branched
combs, sometimes called ‘‘bottle-brushes’’ were synthesized
and experimentally characterized, and their stiffness was
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exploited, for instance, for obtaining new nanostructures or for
templates in producing metallic nanowires [3,8,9].

Due to the large backbone rigidity, these molecules are quite
anisotropic and may show lyotropic main-chain liquid-crystal-
line behaviour in semidilute or concentrated solutions [10].
Moreover, highly-branched combs display a pronounced
two-dimensional (2D) ordering on a surface [11] that can be
characterized and visualized by atomic force microscopy after
depositing the molecules on a flat surface (typically mica or
graphite) [9,11e13]. A large interest is also devoted to polymer
adsorption as a way to control the properties of a surface (its
hardness, wettability, and chemical stability, for instance). For
example, specifically tailored hydrophilic polymers such as
poly(vinyl alcohol) or poly(ethylene glycol) are used as surface
coatings to prevent unwanted protein adsorption on charged or
hydrophobic surfaces [14]. Linear or branched polymers are
being used for this purpose, and a recent work dealt with the
adsorption of comb copolymers with an adsorbing backbone
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and repulsive side chains [15] as coating materials for biosepa-
rations, for instance in capillary electrophoresis. However,
a qualitatively similar effect can be expected in comb homopoly-
mers, because the free ends of the side chains undergo a weaker
adsorption than the backbone for entropic reasons.

Since surface adsorption constrains the comb conformation,
further enhancing the apparent molecular stiffness, theoretical
and simulation studies often considered the limiting case of
strictly 2D combs [16,17], even though the surface adsorption
of combs in 3D (three dimensional) was also modelled with a lat-
tice Monte Carlo (MC) method [18]. Off-lattice simulations stud-
ied the related, but a distinct, problem of the confinement of
combs between impenetrable, but otherwise non-interacting
parallel plates [19]. Analytical approaches to study the surface
adsorption of combs considered 2D molecules in the regime of
strong adsorption, and the conformational properties were ob-
tained by free-energy minimization [17]. In this way, the observed
backbone curvature in a dense monolayer of highly-branched
combs could be explained through the elasticity of the side chains.

However, in general the surface adsorption of macromolecules
cannot be strictly 2D due to the entropic freedom of the end beads.
Moreover, even with very long side chains, where end effects are
negligible, and in the limit of strong adsorption, a fully 2D struc-
ture may not be achieved in practice for kinetic reasons, and self-
overlap of the single molecule would easily be obtained. For these
reasons, we carried out an off-lattice MC simulation in 3D of the
adsorption of comb homopolymers on a smooth, continuous
surface aimed to characterize inter alia the backbone stiffness.
In the next section, we report the simulation methodology, which
represents an extension of the method previously adopted to study
isolated combs [6]. We then turn to the main results, by first dis-
cussing the interaction energy of the adsorbed combs, and then
their molecular size through the mean-square end-to-end distance
and radius of gyration of the backbone. Finally, we consider the
backbone persistence length, the thickness of the adsorbed mole-
cules and the molecular aspect ratio.

2. Simulation methodology
2.1. The system Hamiltonian
We adopt a bead-and-spring model with a hard-sphere inter-
action potential to describe the excluded-volume interactions,
assuming an athermal solvent. This coarse-grained model can
be viewed as the minimal model that still captures the main
physical features of the system at a large scale. For a free mole-
cule in 3D space, the system Hamiltonian is given by [6,20]:

H ¼ kBT
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where rij¼ jXi�Xjj is the instantaneous inter-bead distance,
Xi and Xj being the vector position of the i-th and j-th beads,
respectively. In Eq. (1), the terms within the first sum account
for the harmonic springs between the connected beads, indi-
cated by i w j, and those within the second sum for the pair-
wise interaction potential. Adopting a hard-sphere potential,
V(r) is given by:

VðrÞ ¼ þN if r < d
0 if r > d

�
ð2Þ

where d is the sphere diameter. With the definition of the spring
constant in Eq. (1), the mean-square distance between con-
nected beads in a random walk is hr2

i;iþ1i ¼ 3[2. As previously
done [20], in the following we use throughout the reduced units
kBT¼ 1 and [ ¼ 1, and take d ¼ [ as a convenient choice.

We also assume that the adsorption substrate occupies the
half-space �N< z< 0 and exposes a smooth, featureless sur-
face that is infinite in the x, y directions, introducing a further
term in the Hamiltonian. This term, expressed as

P
i wðDiÞ,

depends only on the distance Di of i-th bead from the surface,
and therefore it is a one-body potential. We assume that each
polymer bead interacts with a substrate ‘molecule’ through
a LennardeJones 6-12 potential, wLJ

6-12ðrÞ:
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This potential contains two terms of the form wn(r)¼�Cn/rn

(with Cn> 0 for n¼ 6 and Cn< 0 for n¼ 12). Following
Ref. [21, p. 155e157], upon integration over all the substrate
molecules we get from each term:

wnðDÞ ¼
2pCnr

ðn� 2Þðn� 3Þ
1

Dn�3
ð4Þ

where r is the substrate density of ‘molecules’. Therefore, the
full potential accounting for both the attractive and the repul-
sive part becomes a 3-9 potential:
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which has a minimum for D¼ (2/5)1/6s and vanishes for
D¼ (2/15)1/6s. In practice, it is more useful to consider
a soft but eventually impenetrable surface through a lower
cut-off, so that the bead-surface potential becomes:

wðDÞ ¼
N D < ð2=15Þ1=16
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and the shortest allowed bead-surface distance is D¼ (2/15)1/6s.
Therefore, a bead with a diameter equal to [ might partially enter
the surface. For this reason we parameterized the potential so
that the minimum of w(D) is found at Dmin¼ 1/2, whence:

s¼ Dmin=ð2=5Þ1=6¼ 0:5825 ð7Þ

For simplicity, we further selected r¼ 3/p, while the 3 param-
eter was chosen in the weak adsorption limit for practical
reasons, since the equilibration times in the Monte Carlo sim-
ulations (see also later) do strongly increase with increasing 3.
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In practice, we selected 3¼ 19.092, so that the potential min-
imum is:

wðDminÞ ¼ �2:0 kBT ð8Þ
2.2. The adsorption criterion for physisorption
In real systems, the non-bonded interactions between a physi-
sorbed molecule and a surface may be due to hydrogen bonds,
dipolar interactions or dispersion forces, or more generally to
their combination. Therefore, at room temperature, physisorp-
tion should be regarded as a reversible, dynamic equilibrium
between surface-adsorbed and free molecules. Ideally, one
should model a huge system with a large number of molecules
that may adsorb and desorb from the surface to evaluate the equi-
librium constant. Practically, our simulations only consider
single molecules unbound in the x, y directions (thanks to peri-
odic boundary conditions), confined in the z> 0 half-space and
interacting with the surface at z¼ 0. Therefore, the configura-
tional properties of an adsorbed molecule must be calculated
from an appropriate subset of the configurations encountered
after equilibration in a very long MC simulation run for an ergo-
dic system, or, more efficiently, in different replica of equivalent
shorter simulations. This problem is increasingly important with
short chains, since the configurational entropy favouring de-
sorption becomes more important than the interaction energy.
We thus adopted an energetic criterion to select the adsorbed
configurations for calculating the average properties of interest.
If two molecules interact through a short-range LennardeJones
potential, we can safely assume that the interaction is negligible
when the separation r in Eq. (3) is �4s, so that:

wLJ
6-12ðr ¼ 4sÞ=wLJ

6-12ðr ¼ rminÞ ¼ 4�5 ð9Þ

Adopting the same criterion for the limiting distance Dlim of
a significant surface potential, we have:

w3-9ðDlimÞ=w3-9ðDminÞ ¼ 4�5 ð10Þ

and solving this equation with respect to Dlim by Eq. (5) we
obtain Dlim y 10s, or Dlim y 6 by Eq. (7). Hence, we assume
that a molecule is in a (weakly) adsorbed configuration when-
ever at least one of its beads lies at a distance D< 6 from the
surface.
2.3. The size and topology of the modelled combs,
and the simulation strategy
We consider combs with Nb backbone beads and nb¼ Nb� 1
springs, containing f arms, each with Na beads. The arms are
evenly distributed along the backbone, and the total number of
beads is N¼ Nbþ fNa. The branching density is m¼ (Nfþ 1)�1,
where Nf is the number of beads between adjacent branch points,
which reduces to m¼ f/Nb in the long-chain limit. Here, we
study both linear chains with m¼ 0 and highly-branched combs
with m¼ 0.25, 0.5 and 1 (neglecting the end beads). The two
latter combs, also referred to as ‘bottle-brushes’ for their large
density of branching, were already studied in free space with
the same model [6]. Note that for m¼ 0 or for Na¼ 0 we get a
linear chain with the same length as the comb backbone. In
this study, we considered linear chains and combs with up to
N¼ 350 (for the combs with m¼ 1 we also considered the
case N¼ 590 and Nb¼ 100), the combs having a backbone
length up to Nb¼ 100 and Na¼ 5 in all cases.

The simulations employ the MC method in continuous 3D
space using the standard Metropolis algorithm as described in
previous papers [6,20]. The procedure involves random local
moves of a randomly selected bead with a minimum displace-
ment of 0.1 (in [ units) adjusted to achieve an acceptance ratio
very close to 0.5 to avoid non-ergodicity in the phase-space sam-
pling. Due to the excluded-volume constraint and the presence
of the surface, the number of rejected moves was somewhat
larger than in the free state, but still the acceptance ratio was
never lower than 0.49. As starting geometries, stretched confor-
mations were generated in the z¼ 2 plane, and then equilibrated
with the MC method monitoring the relaxation time through the
changes in the instantaneous squared radius of gyration of the
molecule S2: one relaxation time was taken as equal to twice
the time (or number of moves) required to achieve a constant
S2, apart from fluctuations, starting from the initial geometry.
The data collection was then carried out saving the instanta-
neous geometries of a large number of almost independent
configurations to calculate the statistical averages. These config-
urations were separated by a large number of sweeps (wN2,
a sweep corresponding to N attempted moves) corresponding
to a single relaxation time, but in a few cases many configura-
tions were still found to be correlated. This ergodicity problem
is related to the surface constraint, and the procedure was
repeated by generating up to 10 independent samples through
independent relaxation of the initial geometry and then collect-
ing the data at intervals equal to one half of the relaxation time
for convenience, even though in principle minor correlations
could still be found between consecutive samples.
2.4. The measured quantities
We first discuss the interaction energy Eint (in kBT units),
defined as:

Eint ¼ Efree�Eads ð11Þ

where Efree and Eads are the average energies of the free and
adsorbed molecules, respectively, since as introduced by us
the bare surface has a nil constant energy. According to this
definition, Eint is positive for an adsorbed molecule and corre-
sponds to the energy required to desorb it to the free equilib-
rium state. In particular, we study the dependence of Eint on
the average number of beads in contact with the surface, Nsurf,
and on the backbone beads Nb or the total number of beads N.
In turn, Nsurf is given by the average number of beads found in
the first layer at a unit distance from the surface.

The average quantities characterizing the molecular size are
the mean-square distances among the backbone beads, hr2

iji,
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and the mean-square end-to-end distance hR2
bi and radius of

gyration hS2
bi of the backbone:
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The chain stiffness is characterized through the backbone
persistence length. Among the possible definitions, as done be-
fore [6] we adopt the projection of the backbone end-to-end
vector Rb on the generic k-th spring [6,7,22]:

lðkÞpers ¼
�
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where l
ðkÞ
pers may depend on the spring location within the

backbone.
The thickness of adsorbed molecules is described through

the z-component of the radius of gyration orthogonal to the
surface in the z¼ 0 plane, or more precisely through the aver-
age value of the zz-component of the radius of gyration tensor,
hS2
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where Xz is the z-component of the vector position of the
molecular centre of mass:

Xz ¼
1

N
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Finally, the molecular anisotropy is characterized by the ratio
A between the average size perpendicular to the surface and
the parallel ones, using the diagonal components of the radius
of gyration tensor:
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where x, y are the directions parallel to the surface. The A ratio
measures the surface-induced anisotropy in the laboratory
frame of reference, since the eigenvalues of the radius of
gyration tensor are not used. For an average spherical shape
Eq. (16) yields A¼ 1, while A¼ 0 would correspond to an
infinitely thin disc, if hS2

xxi ¼ hS2
yyi remain finite.

3. Results and discussion
3.1. The interaction energy
Fig. 1. The interaction energy Eint plotted as a function of the total number of

beads N for linear chains (squares) and combs with branching densities

m¼ 0.5 (circles) and 1 (diamonds). The backbone lengths are in the range

10�Nb� 100. The error bars on Eint are smaller than the symbol sizes.
The interaction energy Eint defined in Eq. (11) is first studied
as a function of the number of beads in contact with the surface,
Nsurf. Since the surface interactions are described through addi-
tive dispersion forces only, Eint linearly increases with Nsurf, ba-
sically with no dependence from topology. In fact, the data points
(not shown for brevity) do follow a universal behaviour, and can
be accurately fitted by straight lines through the origin with es-
sentially the same slope. These slopes give the interaction energy
per bead in contact with the surface, and are slightly smaller than
the depth of the potential minimum in Eq. (8). In fact, their values
are 1.708(5) for the linear chain, 1.691(10) for the comb with
m¼ 0.5, and 1.670(14) for the comb with m¼ 1, the correlation
coefficient being always R> 0.9999 (the figures in parentheses
are the estimated standard errors on the last significant digits ob-
tained by weighted regression). These values indicate a weak
trend towards a smaller Eint with an increasing branching density
m, but the differences are not statistically significant at the 3s

level. On the other hand, Eint linearly depends on the number
of backbone beads Nb, strongly increasing with an increasing
branching density m (data not shown), because more beads inter-
act with the surface thanks to the molecular topology. It is of
greater interest, however, to plot Eint as a function of the total
number of beads N, as shown in Fig. 1. The figure shows that
for a given N the linear chains have a larger Eint than combs,
whose interaction weakens with increasing m. This result can
be explained considering that for a fixed N a larger branching
density, i.e., more side chains, implies more terminal beads
that are not adsorbed for entropic reasons, whence the smaller
interaction energy.

In conclusion, for a given backbone length combs show
a stronger adsorption than linear chains, whereas the opposite
is true for a given molecular mass due to the large number of
free ends that are not fully adsorbed. This feature is relevant
when hydrophilic polymers are used as coatings of hydropho-
bic surfaces to prevent the unwanted adsorption of proteins or
of other biological macromolecules, for instance in analytical
separation techniques [14,15].
3.2. The molecular size
The size of the adsorbed molecules is described through the
backbone mean-square end-to-end distance, hR2

bi, and radius



Table 1

The fitting parameters of Eq. (17) obtained by weighted regressions for linear

chains (m¼ 0) and combs with Na¼ 5 beads per arm and a varying degree of

branching m

m hR2
bi

a hS2
bi

b hr2
iji

c

aR nR aS nS aij nij

0 1.25(13) 0.705(11) 0.24(1) 0.682(6) 2.52(4) 0.648(2)

0.25 1.04(10) 0.796(12) 0.21(1) 0.753(7) 2.08(9) 0.748(6)

0.5 1.54(8) 0.796(8) 0.27(1) 0.767(6) 2.55(5) 0.765(3)

1 1.83(12) 0.831(10) 0.33(14) 0.795(6) 2.99(8) 0.812(4)

The standard errors on the last significant digit(s) are reported in parentheses.
a Mean-square end-to-end distance of the backbone.
b Mean-square radius of gyration of the backbone.
c Mean-square distance between beads i and j of the backbone. For all topol-

ogies, a constant backbone length of Nb¼ 100 beads was used.
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of gyration, hS2
bi, and are shown in Fig. 2 (empty and filled

symbols, respectively) as a function of the number of the back-
bone springs nb. As expected, combs have a larger size than
the linear chains with the same nb, with an increasingly stron-
ger dependence on the branching density m and the backbone
length nb due to the increased excluded volume among the
arms. In fact, for the longer chains, the data points can be fitted
with the power law:

	
X2


¼ axn

2nx
b ð17Þ

where X is either Rb or Sb, and nx is the corresponding swelling
exponent (solid and dashed lines in Fig. 2). The weighted best-
fit values of ax and nx are reported in Table 1. The larger
exponents for highly-branched combs compared to linear
chains are already evident from the slopes of the fitting lines
in the logelog plot.

Fig. 2 shows also that in the adsorbed chains the swelling
exponents nx do change with the backbone length, both for
hR2

bi and for hS2
bi, and nR is larger than nS (see Table 1), even

though the difference is not statistically significant at the 3s

level. All the exponents are significantly larger than the value
we obtained for the mean-square end-to-end distance of a free
linear chain, namely n¼ 0.588(2) [6], equal in turn to the best
current theoretical value of 0.5882(11) [23]. Still, for the linear
chains, they are smaller than the theoretical value for self-avoid-
ing walks in 2D, namely n¼ 0.75 exactly [24]. A similar trend
was also found through off-lattice MC simulations for 2D linear
chains by Freire et al. [25], who obtained critical exponents
larger than ours, but still with nS< nR< 0.75, the differences
being larger than the estimated standard errors. On the other
hand, other off-lattice MC simulations obtained a different
result, namely that athermal short linear chains with N� 30
Fig. 2. The backbone mean-square end-to-end distance hR2
bi (empty symbols),

and radius of gyration hS2
bi (filled symbols) plotted as a function of the number

of the backbone springs nb. The squares indicate linear chains, while the

circles and the diamonds refer to combs with branching densities m¼ 0.5

and 1, respectively, with a side-chain length of Na¼ 5 beads. In all cases,

the error bars are smaller than the symbol size. The combs with m¼ 0.25

are not reported for clarity. The solid and dashed lines are the power-law fitting

curves obtained by weighted regression according to Eq. (17), obtained by

ignoring the shorter chains. The best-fit parameters are reported in Table 1.
already showed an exponent of 0.750(3) for the mean-square
end-to-end distance in 2D, unlike what found in 3D where an
apparent exponent of 0.638(3) was obtained [19]. Crossover
exponents and finite size effects could partly account for such
differences, but the detailed explanation is not quite clear as
yet, in our opinion.

The discrepancy between our nx values and the theoretical
one in 2D can be rationalized by considering that our adsorption
criterion is relatively loose, since chain configurations with only
few adsorbed beads are included in the calculations. In fact, our
interaction potential is weakly attractive, so that a significant
fraction of monomers forms ‘loops’ instead of ‘trains’
(Fig. 3), with large deviations from a 2D system. Moreover,
the convergence of the critical exponents nx to the asymptotic
values appears to be quite slow in 2D, so that Table 1 only reports
apparent critical exponents. We checked that upon strongly
increasing the surface attraction by choosing a larger 3 so that
w(Dmin)¼�10.0 kBT in Eq. (8), the apparent swelling expo-
nents increase to nR¼ 0.735(7) and nS¼ 0.710(4), but the ergo-
dicity problems (i.e., the kinetic trapping of the chain in an
almost frozen adsorbed state) become serious even for linear
chains. Therefore, we may expect that in strong attractive condi-
tion the exponent should converge to the theoretical value of
0.75 in 2D. The fact remains that the nR and nS exponents for
finite combs are larger than for the corresponding linear chains,
and increase with the branching density, even though in some
cases the differences are within the statistical uncertainty.

Another estimate of the critical exponents is provided by
mean-square distances among the backbone beads, hr2

iji, plotted
as a function of the topological separation ji� jj in Fig. 4 at
a fixed backbone length (Nb¼ 100). Neglecting neighbouring
beads, the data were fitted by the power-law equation (Eq.
(17)), after replacing nb with ji� jj (solid lines in Fig. 4), and
the resulting nij and aij values are reported in Table 1. For the
linear chain, nij is smaller than nR and nS, whereas nij¼ nS in
Fig. 3. Sketch of the loops and trains than can be formed by adsorbed chains.



Fig. 4. The mean-square distances among the beads hr2
iji plotted as a function

of the topological separation ji� jj for combs with Nb¼ 100 and a different

density of branching. The squares indicate linear chains, while the circles

and the diamonds refer to combs with branching densities m¼ 0.5 and 1, re-

spectively, with a side-chain length of Na¼ 5 beads. In all cases, the error bars

are smaller than the symbol size. The combs with m¼ 0.25 are not reported for

clarity. The solid lines are the power-law fitting curves according to Eq. (17),

ignoring the end beads. The best-fit parameters are reported in Table 1.
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combs with m¼ 0.25 and 0.5, both exponents being smaller than
nR. In the highly-branched comb with m¼ 1 we find the
inequality nS< nij< nR, although the differences are not statisti-
cally significant at the 3s level. The exponents show that in all
systems the mean-square end-to-end distance increases with
nb faster than the mean-square distances among the internal
beads, hence also faster than the mean-square radius of gyration.
Such observation suggests that the end-to-end distance will
achieve its asymptotic values more quickly than the radius of
gyration, as already found for free molecules [6]. Therefore,
the exponents reported in Table 1 would slowly change with
increasing nb, the different values being due to the chain finite-
ness. For this reason, the nij exponents are also plotted as a func-
tion of nb

�1 in Fig. 5. At least for linear chains, our extrapolated
Fig. 5. The Flory exponent nij plotted as a function of nb
�1 for linear chains

(squares) and combs with a varying density of branches m and an arm length

of Na¼ 5 beads.
results are consistent with the theoretical value of 0.75. Com-
pared to what we obtained for free chains, where the theoretical
value is already achieved by backbone lengths with as few as 100
beads [6], an adsorbed chain attains the asymptotic behaviour at
a very large molecular mass, possibly outside the experimental
range. As for the combs, the plots in Fig. 5 indicate that no ex-
trapolation may be confidently performed from finite molecules.
In principle, we expect that infinitely long combs with a finite
and constant side-chain length eventually achieve the theoreti-
cal value n¼ 0.75, independent of branching density. However,
such asymptotic behaviour is not apparent in our simulations,
and we suggest that the same problem is also experimentally met.
3.3. The stiffness of the adsorbed molecules
and the backbone persistence length
The stiffness of the adsorbed molecules was studied through
the backbone persistence length, defined in Eq. (13), in compar-
ison with the analogous quantity for the free molecules [6,7].
This definition, particularly suited for finite chains, generalizes
the original one due to Flory [22]. According to Eq. (13), the
persistence length l

ðkÞ
pers is the average projection of the end-

to-end vector Rb on the generic k-th backbone spring, and there-
fore it depends on k. The persistence lengths of adsorbed chains
are shown in Fig. 6 as a function of k in comparison with those of
the free molecules. In all cases, l

ðkÞ
pers has a maximum for interme-

diate k, and it displays small values near the chain ends (k z 1
and k z nb). This is due to the greater configurational freedom
of the end beads, often not adsorbed for entropic reasons, so
that the persistence length of the end springs is not affected by
branching or adsorption. Apart from these end effects, upon
adsorption the backbone stiffness increases with branching
more strongly than in free molecules, and we do not find an
extended plateau in the central part of the plots of l

ðkÞ
pers vs. k.
Fig. 6. The persistence length l
ðkÞ
pers plotted as a function of the spring location k

within the chain backbone (k¼ 1 and Nb� 1 are the terminal springs) for the

adsorbed chains (filled symbols) and the free chains (open symbols) for com-

parison. In all cases the backbone length was Nb¼ 100, and the arm length of

the combs was Na¼ 5. The data apply to linear chains (squares) and combs

with m¼ 0.5 (circles) and 1 (diamonds). The data for the free comb with

m¼ 1 are not reported for clarity.



Fig. 7. The effective persistence length lpers plotted as functions of the number

of backbone springs nb for linear chains (m¼ 0, squares) and combs with

Na¼ 5 beads per arm and different branching densities: m¼ 0.25 (triangles),

0.5 (circles), and 1 (diamonds). The filled symbols apply to the adsorbed mol-

ecules, and the empty symbols to the free ones. The solid lines are only guides

for the eye.

Fig. 9. The mean-square thickness of the adsorbed molecules defined by the

component of the mean-square radius of gyration perpendicular to the surface,

hS2
zzi, plotted as a function of the total number of beads N for linear chains

(squares) and combs with Na¼ 5 beads per arm and different branching den-

sities: m¼ 0.25 (triangles), 0.5 (circles), and 1 (diamonds). The solid lines are

only guides for the eye.
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In order to characterize the backbone stiffness through an
effective persistence length lpers not affected by end effects,
we average the l

ðkÞ
pers values over the central plateau, as done in

previous work. Here we follow the same procedure, although
this plateau is quite restricted. The resulting values of lpers

strongly increase with the backbone length nb for a fixed arm
length Na¼ 5, as shown in Fig. 7 (filled symbols), achieving
values much larger than for the corresponding free molecules
(empty symbols). Moreover, lpers increases also with the branch-
ing density m at a fixed backbone length as displayed in Fig. 8,
the adsorbed molecules showing again a larger stiffness than the
free molecules. These results clearly demonstrate that the back-
bone stiffness of linear chains and combs does significantly
increase upon surface adsorption even at weak adsorption
Fig. 8. The effective persistence length lpers plotted as a function of the branch-

ing density m for linear chains (m¼ 0) and combs (m> 0, with a constant arm

length Na¼ 5) at a fixed backbone length Nb¼ 100 as free molecules (empty

symbols) and adsorbed on a surface (filled symbols). The solid lines are only

guides for the eye. When not shown, the error bars are smaller than the symbol

size.
strength. Such behaviour may explain the experimentally
observed liquid-crystalline ordering of highly-branched mole-
cules (the molecular ‘bottle-brushes’) on atomically flat sur-
faces [11,13] (see next paragraph).
3.4. The molecular thickness at the interface
and the aspect ratio of the adsorbed chains
The thickness of the adsorbed molecules is described
through the zz-component of the radius of gyration tensor
hS2

zzi of the whole molecule [Eq. (14)]. hS2
zzi is plotted in

Fig. 9 as a function of the total number of beads N for linear
chains and combs with a fixed arm length Na¼ 5 and different
branching densities m. In all cases, hS2

zzi increases with an
increasing N to a maximum. After that, in combs, hS2

zzi levels
off to a constant value independent of the branching density,
suggesting that the same value is eventually achieved by linear
chains. This behaviour should be attributed to an increasing
number of beads that interact with the surface, which produce
in turn a larger interaction energy (Fig. 1). Therefore, an in-
creasing N enhances the surface spreading and adhesion, and
the thickness of the adsorbed polymer layer becomes indepen-
dent of the density of branching and eventually of topology.

On the other hand, at small N, the interaction energy with
the surface is comparable to the entropy loss due to surface
adsorption and the thickness of the adsorbed layer somewhat
depends on topology. In fact, Fig. 9 shows that in this case
the combs display a smaller thickness than linear chains for
a given N due to the shorter backbone length. This feature
can be explained by the larger probability of linear chains of
forming loops instead of trains, the latter conformation being
preferred by combs because of the larger bead density near
the backbone due to branching. Such results do basically agree
with those obtained through a self-consistent approach [26].
Therefore, based on this picture we obtain the general result



Fig. 10. The shape parameter A defined in Eq. (16) plotted as a function of the

total number of beads N for linear chains (squares) and combs with Na¼ 5

beads per arm and different branching densities: m¼ 0.25 (triangles), 0.5

(circles), and 1 (diamonds). The solid lines are splines through the data points

used only for visual clarity.

Fig. 11. The ratio lpers=2hS2
zzi

1=2 plotted as a function of the number of back-

bone springs nb for linear chains (m¼ 0, squares) and combs with Na¼ 5

beads per arm and different branching densities: m¼ 0.25 (triangles), 0.5 (cir-

cles), and 1 (diamonds). The solid lines are only guides for the eye. This ratio

slightly underestimates the molecular aspect ratio, as discussed in the text.
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that highly-branched combs are better suited than linear chains
to form thin layers on a surface in spite of the larger configu-
rational freedom of the many free ends.

The anisotropy of the adsorbed molecules can be described
through the A ratio defined in Eq. (16) and is shown as a func-
tion of N in Fig. 10. The plot shows that the shape distortion
induced by the surface is quite severe for all topologies, and
that A monotonically decreases with an increasing N in all
cases. However, the molecular distortions from the spherical
shape (in the laboratory frame of reference) monotonically
decrease with an increasing branching density m, at a fixed
N. Thus, the surface distortion is more evident for linear
chains (m¼ 0), and becomes less pronounced for highly-
branched combs as an effect of topology, in spite of their
smaller thickness. In fact, the larger local density of monomers
due to branching induces a larger local stiffness in 3D. How-
ever, a higher branching implies a shorter backbone length at
a fixed N, and therefore the relative size enhancement parallel
to the surface upon adsorption and the overall molecular defor-
mation is somewhat smaller than for the linear chain. On the
other hand, in weakly branched combs the opposite behaviour
may be found, since a light branching may enhance the surface
distortion because of the smaller stiffness, and the larger num-
ber of beads close to the backbone compared to linear chains.

Finally, Fig. 11 shows the ratio lpers=2hS2
zzi

1=2 as a function
of the number of backbone springs nb. This ratio yields a rea-
sonable estimate of the molecular aspect ratio, assuming that
the molecular diameter of the adsorbed molecules is approxi-
mately given by twice the component of the radius of gyration
perpendicular to the surface. Actually, since the molecules are
not fully adsorbed, as previously discussed, 2hS2

zzi
1=2 provides

an upper bound for the true molecular diameter, so that in turn
the calculated ratio somewhat underestimates the true molec-
ular aspect ratio. In any case, Fig. 11 shows that the molecular
aspect ratio of the adsorbed molecules strongly increases with
the backbone length, more so the larger is the branching
density, due to the analogous increase in lpers (Fig. 7). More-
over, the values are also much larger than for the correspond-
ing free molecules in 3D, where the aspect ratio was found to
barely exceed unity.

The rapidly increasing behaviour of the molecular aspect
ratio may explain the observation that highly-branched combs
with very long backbones do form ordered liquid-crystalline
domains on atomically flat surfaces [9,11e13]. In fact, theory
predicts a lyotropic behaviour of semiflexible chains when the
aspect ratio exceeds a value of 10 [27,28], consistent with the
extrapolation to longer backbones of lpers=2hS2

zzi
1=2 (which

somewhat underestimates it).

4. Concluding remarks

In this paper, we study the adsorption of highly-branched
combs on a flat and featureless surface in 3D by using off-lat-
tice Monte Carlo simulations with a minimal coarse-grained
model. The results are first discussed through the interaction
energy with the surface and the molecular size with its (appar-
ent) critical exponents. The data suggest that upon surface ad-
sorption the asymptotic 2D behaviour is achieved more slowly
than for the free molecules, in particular with combs. Such be-
haviour is related to the ‘topological’ stiffness due to the cov-
olume repulsions among the side chains of the combs [6,7]
that is significantly enhanced by surface adsorption. Accord-
ingly, we also studied the persistence length of the backbone
and its dependence on the branching density of the adsorbed
molecules. The thickness and anisotropy of the adsorbed
combs is also considered. It turns out that many terminal beads
of the side chains in highly-branched combs are not adsorbed
for entropic reason, thus decreasing somewhat the interaction
energy with the surface compared to linear chains with the
same molecular mass. However, we find the general result
that highly-branched combs are better suited than linear chains
to form thin adsorbed layers on a surface, since the presence of
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the non-adsorbed free ends does not enhance the thickness of
the adsorbed combs because it involves only a few beads.
Moreover, we also show that the molecular aspect ratio
strongly increases upon adsorption, becoming increasingly
larger with an increasing branching density. Such result leads
to predict the possibility of a 2D molecular ordering, in agree-
ment with the experimentally observed pattern.

As final comments, we note that in the present paper we only
considered relatively short side chains grafted to a much longer
backbone. The opposite case of increasingly long side chains at
a fixed backbone length would eventually correspond to a star
polymer, thus loosing the topological specificity studied in the
present paper. Also, we only considered the case of a weak
adsorption. Increasingly long chains eventually show a strong-
adsorption behaviour because of the additivity of the dispersive
interactions. The strong bead-surface adsorption limit was
briefly explored for linear chains, but it was not systematically
explored for technical reasons. In fact, even with linear chains
such situation leads to severe ergodicity problems with the pres-
ent methodology that could possibly be overcome by different
simulation strategies like the parallel tempering Monte Carlo
method (see Ref. [29] for a recent review). On the other hand,
we point out that this limit may also correspond experimentally
to a non-ergodic system, with the adsorbed chains kinetically
trapped in a glass-like state.
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